

eMobility Analyser A 1632 Bedienungsanleitung Version 1.3.7, Code Nr. 20 752 917

Händler:

Hersteller:

METREL d.d. Ljubljanska cesta 77 1354 Horjul Slowenien Website: <u>http://www.metrel.si</u> e-mail: <u>metrel@metrel.si</u>

CE Die Kennzeichnung Ihres Geräts bestätigt, dass es den Anforderungen aller EU-Vorschriften entspricht.

© 2020 METREL

Die Handelsnamen Metrel®, Smartec®, Eurotest®, Auto Sequence® sind in Europa und anderen Ländern eingetragene Marken.

Diese Veröffentlichung darf ohne schriftliche Genehmigung durch METREL weder vollständig noch teilweise vervielfältigt oder in sonstiger Weise weiterverwendet werden.

Inhaltsverzeichnis

1	Allgemeine Beschreibung	5
	1.1 vvarnungen und Hinweise	5
	1.1.1 Markierungen auf dem Instrument:	/
	1.1.2 HINWEISE ZU MESSTUNKTIONEN	/
	I.2 Batterie und Laden von LI-Ionen-Batteriepack	8
	1.2.1 Batterieanzeige	8
	1.2.2 Lader	8
	1.2.3 Richtlinien für den Li-Ionen-Batteriepack	8
	1.3 Angewandte Normen	9
2	Zubehör	. 10
	2.1 Standard-Satz	. 10
	2.2 Optionales Zubehör	. 10
3	Reschreibung des Adanters	11
Ŭ	3 1 Frontplatte	11
4	Betrieb des Analysegeräts	.13
	4.1 Berücksichtigung der Stromversorgung	. 14
	4.2 Betriebsmodi	. 14
	4.2.1 Auswahl oder Anderung des Betriebsmodus	15
	4.3 Betrieb im autonomen Modus	. 15
	4.4 Ferngesteuerter Betrieb	. 15
5	Einzelprüfung	. 16
	5.1 Prüfverbindungen mit Ladekabeln/-stationen	. 16
	5.1.1 Verbindung von lösbarem Ladekabel für Mode-3-EVSE	16
	5.1.2 Verbindung mit Mode-2-Ladekabel	16
	5.1.3 Verbindung mit Mode-3-EVSE	17
	5.2 Sicherheits- und Funktionsprüfungen	. 17
	5.3 Diagnoseprüfung – EV-Simulator	. 18
	5.3.1 Fernverbindung	18
	5.3.2 Autonomer Modus	19
	5.4 Diagnoseprüfung – Monitor	. 19
	5.5 Diagnoseprüfung – CP-Fehler	. 20
	5.6 Simulation von Netzspannungsfehlern	. 21
	5.6.1 Simulation der Verbindung des Ladekabels mit einem	
	fehlerbehafteten Stromnetz.	21
	5.6.2 Simulation eines Fehlers, der während des Betriebs auftritt	21
6	Ungraden des Adapters	22
U	Opyraden des Adapters	. 22
7	Wartung	. 23
	7.1 Periodische Kalibrierung	. 23
	7.2 Sicherungen	. 23
	7.3 Service	. 23
	7.4 Reinigung	. 23
8	Technische Spezifikationen	. 24
	3.1 Diagnoseprüfung (EVSE)	. 24

8.2	PP-, CP-Simulator	25
8.3	Systemzustand	25
8.4	Fehler	26
8.5	Sonstige	26
8.6	Allgemeine Daten	27

1 Allgemeine Beschreibung

Der **eMobility Analyser** ist ein multifunktioneller, tragbarer, batterie- oder netzbetriebener Prüfadapter, der für Sicherheits- und Funktionsprüfungen von EVSE und Ladekabeln für EVs ausgelegt ist.

Verfügbare Funktionen und Merkmale, die der **eMobility Analyser** bietet:

- Diagnoseprüfung für die Verifizierung des ordnungsgemäßen Betriebs einer CP-Schaltung;
- Simulation der CP- und PP-Schaltungen eines Elektrofahrzeugs;
- > Simulation von Fehlern an CP-Schaltungen und Eingangsstromnetzen;
- > Zugängliche Ein-/Ausgänge zum Anschließen von Sicherheitsprüfgeräten;
- Überwachung der Kommunikation zwischen Ladestation und EV;
- > Bluetooth-Kommunikation mit Metrel-Sicherheitsprüfgeräten.

1.1 Warnungen und Hinweise

Um das höchste Maß an Bedienersicherheit bei der Durchführung verschiedener Prüfungen und Messungen zu gewährleisten, achten Sie bitte darauf, den **eMobility Analyser** in gutem Zustand und frei von Schäden zu halten. Beachten Sie bei der Verwendung des Adapters die folgenden allgemeinen Warnungen:

- Das Symbol A auf dem Pr
 üfger
 ät bedeutet "Lesen Sie f
 ür einen sicheren Betrieb die Bedienungsanleitung mit besonderer Sorgfalt". Dieses Symbol erfordert eine Ma
 ßnahme!
- Wird das Pr
 üfger
 ät in einer Weise verwendet, die nicht in dieser Bedienungsanleitung angegeben ist, k
 önnte der durch das Ger
 ät gew
 ährleistete Schutz beeintr
 ächtigt werden!
- Befolgen Sie die Anweisungen in der Bedienungsanleitung sorgfältig, sonst kann die Verwendung des Pr
 üfger
 ätes f
 ür den Bediener, das Pr
 üfger
 ät selbst oder f
 ür das gepr
 üfte Objekt gef
 ährlich sein!
- Benutzen Sie das Pr
 üfger
 ät oder eines der Zubeh
 örteile nicht, wenn Sch
 äden festgestellt werden!
- Die Ein-/Ausgangsbuchsen sind nur f
 ür Pr
 üfzwecke vorgesehen! Schließen Sie keine anderen Ger
 äte au
 ßer geeigneten Pr
 üfger
 äten an.
- Schließen Sie das Pr
 üfger
 ät nicht an eine andere Netzspannung als die auf dem Schild neben dem Netzanschluss angegebene an, da es sonst besch
 ädigt werden kann.
- Verwenden Sie nur geerdete 1-Phasen- oder 3-Phasen-Netzstromsysteme zur Versorgung des A 1632. PE muss eine niedrige Impedanz zur Erde haben!
- Manche Vorab-Prüfungen, die den PE-Fehler am Stromnetz feststellen könnten, sind im Modus 2 deaktiviert, um einen Betrieb im IT-Spannungssystem zu ermöglichen. Wenn der Modus 2 verwendet wird, sollte dieser Hinweis berücksichtigt werden. Siehe Kapitel 4.2 Betriebsmodi
- Alle normalen Sicherheitsvorkehrungen müssen getroffen werden, um die Gefahr eines Stromschlags bei Arbeiten an elektrischen Anlagen zu vermeiden!

- Nur ausreichend geschulte und kompetente Personen dürfen die Geräte bedienen.
- Serviceeingriffe oder Einstellungen dürfen nur von kompetenten, autorisierten Personen durchgeführt werden!

1.1.1 Markierungen auf dem Instrument:

"Lesen Sie für den sicheren Betrieb die Gebrauchsanweisung mit besonderer Aufmerksamkeit". Dieses Symbol erfordert eine Maßnahme!

Die Markierung auf Ihrem Gerät bescheinigt, dass es die Anforderungen aller geltenden EU-Vorschriften erfüllt.

Dieses Gerät ist als Elektroschrott zu recyceln.

Dieses Gerät ist durch eine verstärkte Isolierung geschützt.

1.1.2 Hinweise zu Messfunktionen

R iso

- Die Widerstände im Bereich des AUSGANGS, zwischen den Klemmen L/L1-PE, L2-PE, L3-PE betragen ca. 100 MΩ und betragen zwischen den Klemmen L/L1-N, L2-N, L3-N, Lx-Ly ca. 200 MΩ. Dies sollte bei der Messung von Riso berücksichtigt werden.
- Die LED-Anzeigen f
 ür die OUTPUT-Spannung k
 önnen w
 ährend der Isolationspr
 üfung aufleuchten. Dies hat keine besondere Bedeutung und hat keinen Einfluss auf die Messung.

Diagnoseprüfung (EVSE)

- Wegen eines kapazitiven Übersprechens zwischen Leitern in den Adaptern mit drei Phasenausgängen wird eine gewisse Spannung U_{LxN} auf nicht angeschlossenen Phasen angezeigt.
- Verwenden Sie das A1631-Monitoradapterkabel nicht f
 ür eine Ladung von Str
 ömen
 über 32 A.

1.2 Batterie und Laden von Li-Ionen-Batteriepack

Der Adapter A 1632 wird mit einem wiederaufladbaren Li-Ionen-Batteriepack oder mit Netzstrom angetrieben.

1.2.1 Batterieanzeige

Stromnetz	Leistung	ON-LED	
Verbunden	Aus	Blinkt weiß	Analysegerät lädt
Verbunden	Ein	grün	Analysegerät ist eingeschaltet und lädt
Nicht verbunden	Ein	grün	Analysegerät ist eingeschaltet, Ubat > 20 % Kapazität
Nicht verbunden	Ein	rot	Analysegerät ist eingeschaltet, Ubat < 20 % Kapazität
		blinkt rot-blau	Batteriefehler oder Batterie vollkommen leer

Die ON-LED zeigt den Ladungszustand der Batterie an.

1.2.2 Lader

Die Batterie wird immer geladen, wenn die Netzversorgung mit dem Adapter A 1632 verbunden ist. Das intelligente Ladesystem gewährleistet einen angemessenen Schutz und eine maximale Lebensdauer der Li-Ionen-Batterie. Eine typische Ladezeit beträgt 4 h und ein autonomer Betrieb ist > 18 h.

1.2.3 Richtlinien für den Li-Ionen-Batteriepack

Der wiederaufladbare L-Ionen-Batteriepack benötigt eine regelmäßige Wartung und Pflege im Gebrauch und bei der Handhabung. Um die maximale Lebensdauer der Batterie zu erreichen, beachten Sie bitte folgendes:

Verwendung:

- Lassen Sie eine Batterie nicht dauerhaft voll aufgeladen, wenn Sie sie nicht verwenden

Lagerung:

- Laden oder Entladen Sie den Batteriepack des Adapters auf etwa 50 % seiner Kapazität, bevor Sie ihn einlagern.
- Laden Sie den Batteriepack des Adapters mindestens alle 6 Monate auf etwa 50 % seiner Kapazität.

Transport:

Machen Sie sich immer mit allen geltenden örtlichen, nationalen und internationalen Vorschriften vertraut, bevor sie einen Li-Ionen-Batteriepack transportieren.

1.3 Angewandte Normen

Der Adapter A 1632 wird nach den folgenden Vorschriften hergestellt und geprüft:

Elektromagnetische V	/erträglichkeit (EMV):		
EN 61326 – 1	EMC-Anforderungen für die Verwendung elektrischer Mess-, Steuer-,		
	Regel- und Laborgeräte – Teil 1: Allgemeine Anforderungen		
EN 61326 - 2 - 2	EMC-Anforderungen für die Verwendung elektrischer Mess- Steuer-		
	Regel- und Laborgeräte – Teil 2- 2: Resondere Anforderungen –		
	Testkonfigurationen Betriebsbedingungen und Leistungskriterien für		
	traghere Drüf Mess und Wortungegeröte die in		
	liagbaie Fiui-, Wess- und Waltungsgerate, die III		
0:1 1 :: (1)(D)	Niederspannungsverteilungssystemen verwendet werden.		
Sicherheit (LVD)			
EN 61010 – 1	Sicherheitsanforderungen für die Verwendung elektrischer Mess-,		
	Steuer-, Regel- und Laborgeräte – Teil 1: Allgemeine Anforderungen		
EN 61010 - 2 - 030	Sicherheitsanforderungen für die Verwendung von elektrischen Mess-,		
	Steuer-, Regel- und Laborgeräten – Teil 2-030: Besondere		
	Anforderungen an Prüf- und Messschaltungen		
EN 61010 – 031	Sicherheitsbestimmungen für manuelle Sondenbaugruppen für		
	elektrische Messungen und Prüfungen		
Funktional			
Reihe EN 61557	Elektrische Sicherheit in Niederspannungsverteilungssystemen bis		
	1000 V AC und 1500 V DC - Geräte zum Prüfen. Messen oder		
	Überwachen von Schutzmaßnahmen		
EN 61851 – 1	Konduktives Ladesystem für Elektrofahrzeuge Teil 1. Allgemeine		
	Anforderungen		
l i-lonen-Ratterienack			
IEC 62133	Sekundärzellen und "batterien, die alkalische oder andere nicht-saure		
	Elektrolyte enthalten - Sicherheitsanforderungen für tradbare		
	abgodichtete Sekundörzellen und für Betterion die aus diesen		
	bergestellt sind zur Verwendung in tradheren Anwendungen		
	nergestent sind, zur verwendung in tragbaren Anwendungen		
Hinwois zu EN, und	IEC Normon:		
ninweis zu EN- una IEC-Normen:			

Der Text dieses Handbuchs enthält Verweise auf europäische Normen. Alle Normen der Reihe EN 6XXXX (z. B. EN 61010) sind gleichwertig zu den IEC-Normen mit gleicher Nummer (z. B. IEC 61010) und unterscheiden sich nur in den durch das europäische Harmonisierungsverfahren erforderlichen geänderten Teilen.

2 Zubehör

Das Zubehör besteht aus Standard- und Sonderzubehör. Optionales Zubehör kann auf Anfrage geliefert werden. Siehe die Liste für Standardkonfiguration und Optionen in der *Anlage*, oder wenden Sie sich an Ihren Händler oder besuchen Sie die METREL-Homepage: <u>http://www.metrel.si</u>.

2.1 Standard-Satz

- eMobility Analyser A 1632
- Netzanschlusskabeladapter A 1633 f
 ür 1-phasigen 10-A-Stecker auf 3-phasigen 16-A-Stecker
- Der Prüfkabel mit Steckerverbinder Typ 2, Länge 2 m, 1634
- Prüfleitung 2 mm / 4 mm Sicherheits-Bananenstecker-Adapter, rot, Länge 1 m, A 1635
- Schutzbeutel für Zubehör (am Gehäuse angebracht)
- Bedienungsanleitung
- Kalibrierungszertifikat

2.2 Optionales Zubehör

Auf dem beigefügten Blatt finden Sie eine Liste von optionalem Zubehör und Lizenzschlüsseln, die auf Anfrage bei Ihrem Händler erhältlich sind.

3 Beschreibung des Adapters

3.1 Frontplatte

Das Bedienfeld ist auf Abbildung 3.1 unten abgebildet.

Abbildung 3.1: Frontplatte

1	Eingang für Netzstromversorgung (CEE 16 A).
2	Die rote Netzanschluss-LED zeigt die Verbindung mit dem Stromnetz (den eingestellten Betriebsmodus) an. Siehe Kapitel <i>Berücksichtigung der Stromversorgung</i> für weitere Informationen.
3	Eingangssicherungen (siehe Kapitel 7.2 Sicherungen für weitere Informationen).
4	Lx/ N/ PE/ CP/ PP Sicherheits-EINGANGS-Buchsen für die Verbindung mit einem Sicherheitsprüfgerät
5	Stromschleife für den Anschluss der Leckstromklemme zum Messen von I _{PE} .
6	U _{INPUT} -Taste. Umschalter zum Anlegen/Nichtanlegen von Spannung an die EINGANGS-Anschlüsse (1-phasige Buchse, Stecker des Typs 2, 3-phasige Buchse und 4 mm/2 mm- Sicherheitsbuchsen).

7	LED-Anzeige U _{INPUT}						
0	EINGANGS Bug	angelegi, OFF	= Spa	nnung ör do	nicht angeleg	ji. Dinoc	2 Dhacan Mada 2
0	Ladekabels	lise des Typs	> Z I	ui ue	n Anschlus:	s entes	3-Filasen-ivioue-3-
9	1-Phasen-EINGA Ladekabels	NGS-Buchse	für	den	Anschluss	eines	1-Phasen-Mode-2-
22	3-Phasen-EINGA Ladekabels	NGS-Buchse	für	den	Anschluss	eines	3-Phasen-Mode-2-
10	RS232-Verbindu	ngsport (für Firr	nware	-Upgra	de und Serv	icezwecł	ke vorgesehen).
11	Mehrfarbige ON-	LED					
	Siehe Kapitel 1.2	2.1 Batterieanze	<i>ige</i> für	r weite	re Information	nen.	
12	ON/OFF-Taste.						
	Schaltet den eMe	obility Analyser	Ein (k	urz drü	cken) oder A	us (2 s la	ang drücken)
	Auto-off nach 20	Minuten ohne A	Aktivitä	ät			
13	Fernsteuerungs-LED zeigt an, dass der Adapter durch das Metrel-						
	Sicherheitsprüfgerät gesteuert wird (einschließlich CP-, PP- und Fehlerzustand).						
14	Drehschalter zur Auswahl verschiedener simulierter Fehler.						
	Siehe Kapitel 8.4 Fehler für weitere Informationen.						
15	Error-ON-Taste.						
	Ein-/Ausschalten des ausgewählten Fehlers.						
16	Error-ON-LED						
47	ON = Fehler eingegeben, OFF = Fehler nicht eingegeben.						
17	Drenschalter zum Einstellen eines Steuerpilotzustands (CP auf AUSGANGS-Selfe)						
	Position Beschreibung						
		EV geladen ur	na Bei	uttung			
	В	EV angeschio	ssen				
	<u>A</u>	Kein EV anges	SCHIOS	sen			
	В	EV angeschio	ssen				
40		Ev geladen					dee Drewinsity Dilet
10	Drenschalter zum Einstellen von ohmscher Last zur Bewertung des Proximity-Pilot-				des Proximity-Pilot-		
10	SITUTIS (MM AUSGAINGS-SEITE [NU, 13 A, 20 A, 32 A, 63 A, 80 A]						
19	LX/ IN/ FE/ CF/ FF/ CF INON SICHEMERS-AUSGANGS-BUCHSEN IN GEN ANSCHUSS				i iui ueli Alischiuss		
20		GANGS-I EDS					
20	ON – Netzsnann	ung am AUSGA	NGS.	Prüfar	schluss vorh	anden	
	OFF = Netzspan	nung an der Pri	ifverbi	induna	OUTPUT nic	cht vorha	nden.
21	AUSGANGS-Ste	cker für den Ar	nschlu	ss von	Prüfkabeln a	am Ausa	ang des Ladekabels
	oder des EVSE				<u>v</u>		

Hinweis:

Auf der EINGANGS-Seite sind die L/L1, L2, L3, N, PE, CP und PP Sicherheitsbuchsen parallel zur Buchse (8) des Typs 2, der 1-phasigen Buchse (9) und der 3-phasigen Buchse (22) angeschlossen.

4 Betrieb des Analysegeräts

Der eMobility Analyser kann autonom arbeiten oder kann über eine Bluetooth-Kommunikationsverbindung mit einem Metrel-Instrument ferngesteuert werden. Die folgenden Prüfbedingungen können eingestellt werden:

Tasten, Schalter, LEDs	Betrifft	Prüfbedingung
UINPUT On/Off = Off	EINGANG L/L1,L2,L3,N,PE	Keine Spannung am Eingang des Ladekabels, Eingang ist nicht mit dem Stromnetz verbunden
UINPUT On/Off = On Error ON = Off	EINGANG L/L1,L2,L3,N,PE	Netzspannungsbedingung NORMAL am Eingang des Ladekabels
UINPUT On/Off = On Fehler ON = On ERRORS INPUT eingestellt	EINGANG L/L1,L2,L3,N,PE	Netzspannungsbedingung ERROR am Eingang des Ladekabels (durch Schalterstellung ERROR ausgewählt). Siehe Kapitel 5.6 Simulation von Netzspannungsfehlern für weitere Informationen.
PP-ZUSTAND	AUSGANG PP	EV-Simulation, Ladekabelstrombewertung
CP-ZUSTAND Error ON = Off	AUSGANG CP	EV-Simulation, normale Betriebsmodi; A, B, C keine Belüftung, A, B, D Belüftung während Aufladen notwendig
Error ON = On ERRORS OUTPUT eingestellt	AUSGANG CP	EV-Simulation, Fehler am CP simuliert: ->-sh – Diodenkurzschluss, CPsh – CP_PE-Kurzschluss, PEop – PE offen
Jede Kombination	AUSGANG L/L1,L2,L3,N,PE	Verbindung am Ausgang des Ladekabels / der Ladestation. Die Bedingung hängt vom eingestellten Zustand des Instruments ab.

4.1 Berücksichtigung der Stromversorgung

Der 3-phasige 16 A CEE-Eingang ist für den Anschluss an das einphasige und dreiphasige Stromnetz vorgesehen.

Einphasiger Anschluss

Für den einphasigen Anschluss sollte ein Adapter A 1633 für 1-phasigen Stecker mit 10 A auf 3phasigen Stecker mit 16 A verwendet werden. Er eignet sich für die interne Batterieladung und für die einphasige Versorgung des EINGANGS-Abschnitts zur Prüfung von 1-phasigen Mode-2-EV-Ladekabeln.

3-phasiger Anschluss

Die Prüfung von dreiphasigen Mode-2-EV-Ladekabeln erfordert eine dreiphasige Netzstromversorgung des eMobility Analyser und seines EINGANGS-Abschnitts, der Anschluss des Null-Leiters ist obligatorisch. Für die Netzstromversorgung kann ein normales 3-phasiges CEE 16 A 5-Leiter-Verlängerungskabel verwendet werden.

Betriebsmodus	Symb	ol	LED-Anzeige	Beschreibung
Modus 1	\$	N → PE	EIN	Korrekte Verbindung
Modus 2	Q	N ∕ ∕ PE	Blinken (5 s Zyklus)	Korrekte Verbindung
	ج	L G N	Blinken (~0,3 s	L - N gekreuzt oder falsches
			∠yklus)	Spannungssystem

Hinweis:

 Wenn die Netzspannung außerhalb von Standardpegeln f
ür 115 V~, 230 V~ und 230 V / 400 V 3~ liegt, blinkt die NETZ-LED schnell, der eMobility Analyser kann nicht eingeschaltet werden und der Betrieb mit dem Adapter ist nicht möglich.

4.2 Betriebsmodi

Das Analysegerät weist zwei Betriebsmodi auf.

Modus 1

Der Modus 1 ist der bevorzugte Betriebsmodus. Er wird von einem kurzen Piepsen angezeigt, wenn die Netzspannung angelegt wird. In diesem Modus ist der PE-Anschluss der EINGANGS-Stecker mit dem N-Leiter der Anlage verbunden. Dies verhindert Fehlauslösungen des RCD, wenn RCD- oder Impedanzprüfungen ausgeführt werden.

Dieser Betriebsmodus 1 eignet sich für TN- und TT-Spannungssysteme. Die Netz-LED zeigt einen Fehler an und das Analysegerät kann nicht eingeschaltet werden, wenn es an ein IT-Spannungssystem angeschlossen ist.

Modus 2

Der Modus 2 wird von drei Piepsern angezeigt, wenn die Netzspannung angelegt wird. In diesem Modus ist der PE-Anschluss der EINGANGS-Stecker mit dem PE-Leiter der Anlage verbunden. Dieser Betriebsmodus eignet sich für jedes Spannungssystem.

Hinweis:

 Im Modus 2 können die RCDs in der Anlage auslösen, wenn sie empfindlicher sind als der PRCD im geprüften Ladekabel. Eine Fehlauslösung des RCD kann vermieden werden, wenn ein geeigneter alternativer Anschluss für die RCD-Tests verwendet wird.

4.2.1 Auswahl oder Änderung des Betriebsmodus

Einrichtung

- eMobility Analyser ausschalten.
- U_{INPUT}-Taste für mindestens 5 s gedrückt halten, während der Adapter eingeschaltet wird (EIN/AUS-Taste). (Alternativ dazu Netzspannung anlegen, während die U_{INPUT}-Taste für mindestens 5 s gedrückt gehalten wird).
- Wenn die U_{INPUT}-Taste losgelassen wird, zeigt ein Piepston den neu eingerichteten Modus an:

	◄ 》	Einmal Piepsen	Modus 1 ausgewählt		
	◄ 》》》	Dreimal Piepsen	Modus 2 ausgewählt		
•	Der eMohility Analyser ist jetzt bereit für den Betrieb im neuen Betriebsmodus				

Hinweis:

• Die obige Vorgehensweise wiederholen, um zwischen Betriebsmodi umzuschalten.

4.3 Betrieb im autonomen Modus

In diesem Betriebsmodus besteht keine Notwendigkeit für eine Datenverbindung mit Masterinstrumenten. Die Fernsteuerungs-LED ist ausgeschaltet. Die Prüfbedingung des eMobility Analyser kann mit den Schaltern und Tasten auf der Frontplatte des Analysegeräts eingestellt werden.

4.4 Ferngesteuerter Betrieb

Für eine ferngesteuerte Einstellung der Prüfbedingung muss der eMobility Analyser zuerst über Bluetooth mit dem Metrel-Sicherheitsprüfgerät verbunden werden. Sie die *Tabelle Auswahl unterstützter Instrumente* und die Bedienungsanleitung des Instruments, Kapitel Einstellungen für weitere Informationen. Die Fernsteuerungs-LED des Analysegeräts leuchtet und gibt an, dass es von dem Instrument gesteuert wird. Im Fernsteuerungsmodus funktionieren die Tasten des Analysegeräts nicht (außer der Ein/Aus-Taste), und die Stellung der Drehschalter ist irrelevant. Die Prüfparameter werden von dem Instrument eingestellt, von dem das Analysegerät gesteuert wird.

Die Fernsteuerungs-LED des Analysegeräts leuchtet nur, wenn eine zugehörige Diagnoseprüfung (EVSE) an dem Instrument ausgewählt ist. Wenn eine andere Instrumentensicherheitsprüfung ausgewählt ist, kann das Analysegerät nicht ferngesteuert werden und die Fernsteuerungs-LED leuchtet nicht.

5 Einzelprüfung

5.1 Prüfverbindungen mit Ladekabeln/-stationen

5.1.1 Verbindung von lösbarem Ladekabel für Mode-3-EVSE

Abbildung 5.1: Verbindung von lösbarem Ladekabel für Mode-3-EVSE

5.1.2 Verbindung mit Mode-2-Ladekabel

Abbildung 5.2: Anschluss eines 1-Phasen-Mode-2-Ladekabels

Abbildung 5.3: Anschluss eines 3-Phasen-Mode-2-Ladekabels

5.1.3 Verbindung mit Mode-3-EVSE

Abbildung 5.4: Anschluss eines Mode-3-EVSE

5.2 Sicherheits- und Funktionsprüfungen

Generell können sicherheitstechnische Einzelprüfungen und Inspektionen in Kombination mit beliebigen Sicherheitsprüfgeräten durchgeführt werden. Weitere Informationen zur Durchführung der einzelnen Prüfungen und Inspektionen finden Sie in der Bedienungsanleitung des Sicherheitsprüfergeräts.

Beispiele für Prüfschaltungen

Abbildung 5.5: Beispiel für RISO-Prüfungen an einem Mode-2-EV-Ladekabel

Abbildung 5.6: Beispiel für Zline-Prüfung an einem Mode-3-EVSE

Messverfahren

- Verbinden Sie das Ladekabel / die Ladestation mit dem eMobility Analyser (siehe Pr
 üfschaltungen, oben)
- Wählen Sie die Messung oder Prüfung auf dem Sicherheitsprüfer aus.
- Stellen Sie die Prüfparameter/-grenzen der ausgewählten Messung auf dem Prüfgerät ein.
- Bringen Sie das Ladekabel / die Ladestation durch Einstellen des eMobility Analyser in den richtigen Betriebsmodus.
- Schließen Sie die Instrumentenpr
 üfleitungen an die Buchsen des Analyseger
 äts (optional) an, siehe Pr
 üfschaltungen oben und die Bedienungsanleitung des Pr
 üfinstruments.
- Führen Sie die Messung oder Prüfung durch.
- Speichern Sie die Ergebnisse (optional).

5.3 Diagnoseprüfung – EV-Simulator

Diese Prüfung soll ein Elektrofahrzeug mit dem eMobility Analyser simulieren. Die CP- und PP-Zustände können so eingestellt werden, dass das Ladekabel / die Ladestation in den richtigen Betriebsmodus gebracht wird. Das CP-Signal wird analysiert und das Vorliegen einer Spannung am Ausgang des Ladekabels / der Ladestation wird überwacht.

5.3.1 Fernverbindung

Die Prüfung wird in Kombination mit einem externen (Master-) Instrument durchgeführt. Die Ergebnisse werden über eine Bluetooth-Kommunikationsverbindung übertragen und auf dem Masterinstrument angezeigt.

Prüfverbindungen

Abbildung 5.7: Diagnoseprüfung – EV-Simulator-Prüfverbindung mit dem Mode-3-EVSE

Abbildung 5.8: Diagnoseprüfung – EV-Simulator-Prüfverbindung mit dem Mode-2-Ladekabel -Fernverbindung

Messverfahren

- Verbinden Sie das Ladekabel / die Ladestation mit dem eMobility Analyser (siehe Pr
 üfschaltungen, oben)
- Wählen Sie Diagnoseprüfung EV-Simulator an dem Masterinstrument aus.
- Stellen Sie die Prüfparameter an dem Masterinstrument ein.
- Überprüfen Sie, dass der eMobility Analyser im Fernsteuerungsmodus ist (Bluetooth-Kommunikation zwischen dem eMobility Analyser und dem Masterinstrument eingerichtet).
- Führen Sie die Diagnoseprüfung aus.
- Stellen Sie den Status der Prüfung manuell ein (optional).
- Speichern Sie die Ergebnisse (optional).

Informationen über Prüfparameter und angezeigte Ergebnisse finden Sie in der Bedienungsanleitung des Masterinstruments.

5.3.2 Autonomer Modus

Die Prüfbedingung des eMobility Analyser kann mit den Schaltern und Tasten auf der Frontplatte des Analysegeräts eingestellt werden. Nur ein- und 3-phasige Mode-2-EV-Ladekabel können in diesem Modus geprüft werden.

Abbildung 5.9: Diagnoseprüfung – EV-Simulator-Prüfverbindung mit den Mode-2-Ladekabeln -Autonomer Modus

5.4 Diagnoseprüfung – Monitor

Dieser Test überwacht und analysiert das CP-Signal und Spannungen zwischen dem Ladekabel / der Ladestation und dem Elektrofahrzeug. Für diesen Test ist ein Monitoradapterkabel (A 1631) erforderlich.

Die Prüfung wird in Kombination mit einem eMobility Analyser und einem externen (Master-) Instrument durchgeführt. Die Ergebnisse werden über Bluetooth übertragen und auf dem Masterinstrument angezeigt.

Prüfverbindung

Abbildung 5.10: Beispiel für eine Diagnoseprüfung - Monitor

Messverfahren

- Schließen Sie den Kabeladapter A 1631 zwischen dem Ladekabel / der Ladestation und dem Elektrofahrzeug an.
- Verbinden Sie die Prüfsonden mit dem A 1632 eMobility Analyser.
- Wählen Sie die Diagnoseprüfung Monitor an dem Masterinstrument aus.
- Stellen Sie die Prüfparameter an dem Masterinstrument ein.
- Überprüfen Sie, dass der eMobility Analyser im Fernsteuerungsmodus ist (Bluetooth-Kommunikation zwischen dem eMobility Analyser und dem Masterinstrument eingerichtet).
- Führen Sie die Diagnoseprüfung aus.
- Speichern Sie die Ergebnisse (optional).

Informationen über Prüfparameter und angezeigte Ergebnisse finden Sie in der Bedienungsanleitung des Masterinstruments.

5.5 Diagnoseprüfung – CP-Fehler

Diese Prüfung kann typische Fehler auf dem CP-Signal simulieren (Diodenkurzschluss,, CP – PE-Kurzschluss, PE offen) Es wird die Zeit bis zum Abschalten des Ladekabels / der Ladestation als Reaktion auf den simulierten Fehler auf dem CP-Signal gemessen.

Die Prüfung wird in Kombination mit einem externen (Master-) Instrument durchgeführt. Die Ergebnisse werden über Bluetooth übertragen und auf dem Masterinstrument angezeigt.

Prüfanschlüsse

Lesen Sie Abbildung 5.7 und Abbildung 5.8, um mehr über die Prüfanschlüsse zu erfahren.

Messverfahren

- Verbinden Sie das Ladekabel / die Ladestation mit dem eMobility Analyser (siehe *Abbildung 5.7* und *Abbildung 5.8*).
- Wählen Sie die Diagnoseprüfung CP-Fehler an dem Masterinstrument aus.
- Stellen Sie die Prüfparameter (CP-Fehler) an dem Masterinstrument ein.
- Überprüfen Sie, dass der eMobility Analyser im Fernsteuerungsmodus ist (Bluetooth-Kommunikation zwischen dem eMobility Analyser und dem Masterinstrument eingerichtet).
- Führen Sie die Diagnoseprüfung aus.
- Stellen Sie den Status der Prüfung manuell ein (optional).
- Speichern Sie die Ergebnisse (optional).

Informationen über Prüfparameter und angezeigte Ergebnisse finden Sie in der Bedienungsanleitung des Masterinstruments.

5.6 Simulation von Netzspannungsfehlern

Mode-2-EV-Ladekabel verfügen über verschiedene Einrichtungen zum Prüfen des Stromnetzzustands:

- manche Prüfungen überwachen den Zustand des Stromnetzes ständig.

Daher verfügt der eMobility Analyser über zwei Optionen für die Simulation von Eingangsnetzfehlern.

5.6.1 Simulation der Verbindung des Ladekabels mit einem fehlerbehafteten Stromnetz.

Eine falsche Netzspannung wird an EINGANGS-Klemmen / -buchsen des eMobility Analyser angelegt.

Messverfahren

- Verbinden Sie das Ladekabel mit dem eMobility Analyser (siehe Abbildung 5.8).
- Wählen Sie den Fehler mit dem FEHLER-Drehschalter aus.
- UINPUT muss AUS sein. (falls dies noch nicht der Fall ist, stellen Sie UINPUT auf AUS)
- Drücken Sie die Fehler-EIN-Taste, um den Fehler einzustellen und stecken Sie das Ladekabel in die Steckdose.
- Prüfen Sie die Reaktion des geprüften Ladekabels.

5.6.2 Simulation eines Fehlers, der während des Betriebs auftritt

Der Fehler wird aktiviert, nachdem eine Netzspannung (Normalbedingung) an EINGANGS-Klemmen / -buchsen des eMobility Analyser angelegt worden ist.

Messverfahren

- Verbinden Sie das Ladekabel mit dem eMobility Analyser (siehe Abbildung 5.8).
- Wählen Sie den Fehler mit dem FEHLER-Drehschalter aus.
- UINPUT muss EIN sein. (falls dies noch nicht der Fall ist, stellen Sie UINPUT auf EIN)
- Drücken Sie die Taste ERROR ON, um den Fehler einzustellen.
- Prüfen Sie die Reaktion des geprüften Ladekabels.

Hinweis:

 Diese Simulation kann f
ür die folgenden Fehler ausgef
ührt werden: L offen (jede Phase), N offen und PE offen

6 Upgraden des Adapters

Ein Upgrade des A 1632 eMobility Analyser kann von einem PC aus über den RS-232-Kommunikationsanschluss durchgeführt werden. Dadurch kann der A 1632 eMobility Analyser auch dann aktuelle gehalten werden, wenn sich die Normen oder Vorschriften ändern. Laden Sie die neueste Firmware auf dem Metrel-Downloadcenter herunter: https://www.metrel.si/en/downloads/

Abbildung 6.1: Upgraden des Adapters

Verfahren

- Lösen Sie zwei Schrauben (wie in *Abbildung 6.1* angegeben) und entfernen Sie die Schutzabdeckung des RS 232-Anschlusses.
- Verbinden Sie das Standard-DB9-RS232-Schnittstellenkabel an A 1632 und PC. (Ein USB-zu-RS232-Adapter sollte verwendet werden, wenn der serielle PC-Port nicht verfügbar ist)
- Spezielle Upgrading-Software FlashMe führt Sie durch das Upgrading-Verfahren.
- Wenn das Upgrade abgeschlossen ist, setzen Sie die Schutzabdeckung des RS 232-Anschlusses wieder ein.

Hinweise:

- Weitere Informationen erhalten Sie bei Ihrem Händler.
- Ein Upgrade der Firmware über Bluetooth-Kommunikation ist nicht möglich.

7 Wartung

7.1 Periodische Kalibrierung

Es ist unerlässlich, dass alle Messgeräte regelmäßig kalibriert werden, damit die in diesem Handbuch aufgeführten technischen Spezifikationen garantiert werden können. Wir empfehlen eine jährliche Kalibrierung.

7.2 Sicherungen

F1, F2, F3: F 5 A / 500 V / (32 x 6 ,3) mm (Schaltvermögen: 50 kA)

Netzsicherungen, die zum Schutz von Adaptern vorgesehen sind.

Warnungen!

- Ersetzen Sie durchgebrannte Sicherungen durch den gleichen Typ, wie in diesem Dokument definiert.

7.3 Service

Für Reparaturen unter oder außerhalb der Garantie wenden Sie sich bitte an Ihren Händler für weitere Informationen.

Unbefugten Personen ist es nicht gestattet, das Analysegerät zu öffnen. Es gibt keine vom Benutzer austauschbaren Teile im Inneren des Geräts.

7.4 Reinigung

Verwenden Sie ein weiches, leicht angefeuchtetes Tuch mit Seifenwasser oder Alkohol, um die Oberfläche des Analysegeräts zu reinigen. Lassen Sie das Instrument vor dem Gebrauch vollständig trocknen.

Hinweise:

- Verwenden Sie keine Flüssigkeiten auf der Basis von Benzin oder Kohlenwasserstoffen!
- Verschütten Sie keine Reinigungsflüssigkeit über das Instrument!

8 Technische Spezifikationen

8.1 Diagnoseprüfung (EVSE)

U1N, U2N, U3N - Netzspannung

Messbereich (V)	Auflösung (V)	Genauigkeit
0 440	1	\pm (2 % des Messwerts + 2
		Stellen)

Nennfrequenzbereich 0 Hz, 14 Hz ... 500 Hz

Feld - Phasendrehung

Angezeigte Ergebnisse 1.2.3 oder 3.2.1

UCP+, UCP- - Spannung

Messbereich (V)	Auflösung (V)	Genauigkeit
-19.9 V19.9 V	0,1	\pm (2 % des Messwerts + 2
		Stellen)

Ergebnis positiver, negativer Spitzenwert (Intervall von 8 µs)

Freq – Frequenz

Messbereich (Hz)	Auflösung (Hz)	Genauigkeit
500,0 1500,0	0,1	±1 % des Messwerts

D – Tastverhältnis

Messbereich (%)	Auflösung (%)	Genauigkeit
0,1 99,9	0,1	±10 Stellen

levse - Ladestrom durch Ladekabel / EVSE verfügbar

Angezeigter Bereich (A)	Auflösung (A)	Genauigkeit
0,0 99,9	0,1	berechneter Wert*

*Gemäß Tabelle A.8 in IEC/EN 61851-1

toff – Zeit bis zum Abschalten (PEop)

Messbereich (ms)	Auflösung (ms)	Genauigkeit
0 399	1	±(1 % des Messwerts + 5 Stellen)

toff – Zeit bis zum Abschalten (->-sh , CPsh)

Messbereich (s)	Auflösung (ms)	Genauigkeit
0,00 3,10	10	±(1 % des Messwerts + 5 Stellen)

Anmerkung:

Für toff wird der Kanal L1-N gemessen.

8.2 PP-, CP-Simulator

PP-Simulation

Zustand	Widerstand
N.C.	> 300 kΩ
13 A	1,5 kΩ ± 1,5 %
20 A	680 Ω ± 1,5 %
32 A	220 Ω ± 1,5 %
63 A	100 Ω ± 1,5 %
80 A	56 Ω ± 5 %

CP-Simulation

Zustand	Widerstand
A	> 300 kΩ
В	2,74 kΩ ± 1,5 %
С	882 Ω ± 1,5 %
D	246 Ω ± 1,5 %

8.3 Systemzustand

Mögliche Systemzustände	(Messungen	interpretiert de	urch das	Analysegerät*)
-------------------------	------------	------------------	----------	----------------

Zustand	Bedeutung		
A1	kein EV angeschlossen		
A2	kein EV angeschlossen/ PWM		
B1	EV angeschlossen		
B2	EV angeschlossen / PWM		
C1	EV geladen		
C2	EV geladen / PWM		
D1	EV geladen und Belüftung		
D2	EV geladen und Belüftung / PWM		
E	Fehler		
F	Fehler		
Ungültig	CP-Signal kann nicht klassifiziert werden		

*Gemäß Tabelle A.4 in IEC/EN 61851-1.

Falls als Ergebnis mehrere Zustände angezeigt werden, können gemäß IEC/EN 61851-1 alle Zustände als gültig betrachtet werden.

8.4 Fehler

Fehler	Angewandt auf:	Parameter	Beschreibung
L/L1op			L/L1-Leiter geöffnet
L/L2op			L/L1-Leiter geöffnet
L/L3op			L/L1-Leiter geöffnet
Nop	EINGANG		N-Leiter geöffnet
PEop			Schutzleiter geöffnet
L€PE			L/L1- und PE-Leiter gekreuzt*
U _{EXT} (PE)			Externe Spannung am PE (auf Eingangsseite)*
−⊳ -sh		E1	CP-Diode kurzgeschlossen
			Der EVSE-Ausgang solle innerhalb von 3 s
			Strom führen.
CPsh		E2	CP - PE kurzgeschlossen
	AUSGANG		Der EVSE-Ausgang solle innerhalb von 3 s
			Strom führen.
РЕор		E3	PE geöffnet
			Der EVSE-Ausgang solle innerhalb von 100 ms
			Strom führen.

*Die Netzspannung ist über einen Widerstand von 1 M Ω an PE angeschlossen

8.5 Sonstige

Ausgangsspannung LED......EIN: U_{Lx} -N > 50 V

8.6 Allgemeine Daten

Allgemeine Leistungsversorgung 7,2 V I Batterieladezeit Netzstromversorgung	DC (4.4 Ah Li-Ionen) .typischerweise 4 h (Tiefentladung) .115 V ~ ± 10 % 230 V ~ ± 10 % 230 V / 400 V 3~ ± 10 % 50 Hz–60 Hz, 60 VA
Schutzklasse	. 300 V CAT II
Batteriebetriebsdauer: Leerlauf > 32 h Diagnoseprüfung > 18 h	
Schutzklassifizierung Messkategorie	. verstärkte Isolierung □ . 300 V CAT II
Verschmutzungsgrad Schutzart	. 2 . IP 65 (Gehäuse geschlossen), IP 40 (Gehäuse offen) . IP 20 (Netzprüf-Dose)
Abmessungen (B [×] H [×] T) Gewicht	. 36 cm [×] 16 cm [×] 33 cm .5,2 kg (ohne Zubehör)
Akustische/optische Warnhinweise	.ja
Elektromagnetische Verträglichkeit (E Emission Störfestigkeit	E MC):: . EN 55011 Klasse B (Gruppe 1) . Industrielles elektromagnetisches Umfeld
Referenzbedingungen: Referenz-Temperaturbereich Referenz-Feuchtebereich	.25 °C ± 5 °C .40 % RH□–60 % RH
Betriebsbedingungen: Betriebs-Temperaturbereich Maximale relative Luftfeuchtigkeit Nominale Betriebshöhe Lagerbedingungen	. □–10 °C□–50 °C. . 90 % RH (0 °C□–40 °C), nicht kondensierend . bis 3000 m
Temperaturbereich Maximale relative Luftfeuchtigkeit	. □–10 °C□–70 °C. . 90 %RH (–10 °C□–40 °C) . 80 %RH (40 °C□–60 °C)
RS-232-Kommunikation: Serielle RS-232-Kommunikation galvani Baudrate:	sch getrennt .Baudrate 115200 Baud, 1 Stoppbit, keine Parität
Bluetooth-Kommunikation:	.RS232-Standard, 9-polig D, Buchse

Spezifikationen sind mit einem Erweiterungsfaktor von k = 2 zitiert, was einem Konfidenzniveau von etwa 95 % entspricht.

Die Genauigkeit gilt für 1 Jahr unter Referenzbedingungen. Temperaturkoeffizienten außerhalb dieser Grenzen sind 0,2 % des gemessenen Wertes pro °C und 1 Stelle.